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ABSTRACT

This paper analyzes the regularity of plane elasticity problems with
piecewise analytic data. The results are given in the frames of the countably
weighted Sobolev spaces introduced by Babuska and Guo [SIAM J. Math. Anal.,
Vol 19 (1988), pp. 172-203, Vol. 20 (19838), pp. 763-781]1. These results are
of major significance for the practical design and theoretical analysis of the
p and h-p version of the finite element solutions of the elasticity

problems.

Key Words. Elasticity problem with piecewise analytic data, countably normed

space, weighted Sobolev space, singularity.

AMS(MOS) Subject Classifications. 35B65, 35D10, 35G15, 35J0S, 73C02




§1. INTRODUCTION

The regularity of the boundary value problems for elliptic equations was
addressed in many papers. The regularity of the solution, when the domain is
not smooth, was addressed in [18,19] and subsequently in many papers (see e.g.
[13,20,21,22,26]). The analysis was made for the scalar equation (e.g.
Laplace equation) and for general elliptic systems, e.g. theory of elasticity.
Although the results are essentially similar, the proof's are in various
details different. The regularity of the solution is typically described in
terms of Sobolev spaces and various decompositions of the solution in the
singular and regular parts. These results are important not only for
theoretical reasons but also for the design and analysis of the numerical
treatment of these problems.

Finite element method is today the mostly used method for solving the
elliptic equations. There are three versions of the finite element method,
the h, p and h-p finite element method (see e.g. [7]). The following
questions arise in the connection with the FEM:

a) What is a typical class of problems in applications, e.g. structural
mechanics,

b) What regularity results are the most useful for the design and
analysis of the finite element method, especially its h-p version.

The answer to the first question is that in the structural mechanics we
deal with the problems with piecewise analytic data (boundary of the domain,
coefflcients of the equation and boundary conditions, etc.). Description by
the standard Sobolev of finite order neglects features important for the
numerical solution.

The answer to the second question is that we need such a description

which allows to construct the numerical method which is maximally effective.




In the case of the p-version of the finite element the user provides the
mesh, and the degree is adaptively selected (see e.g., Applied Structure
(Rasna Corp. CA, USA) or STRIPE (Aeronautical Research Inst. of Sweden}). The
proper regularity description leads to the rules which the user has to follow
(see e.g. [27]). In the case of the h-p version the proper form of the
regularity results allow to construct the meshes and degrees such that the
convergence of the method is exponential, see e.g. {4,5,6, 14].

We have found that the proper form of the regularity results which serves
best the goals of the numerical analysis is the description of the regularity
in the frame of countably normed (weighted) Sobolev spaces. Although the
spaces are close to the Gevrey spaces (see [9,11]) they have some special
different features, and the form of the statements are directly related to the
effective use in the FEM. We have introduced these spaces in [2,3,4] and
shown their significant applications for the finite element analysis. We have
proven that the h-p version with an exponential rate of convergence can be
constructed.

In [2,3,4] we addressed the problem of the scalar equation. Here we
address the elasticity problem. Although the basic results and the analysis
methodology are similar here and for the scalar problem, there are various
essential details which need significant modification of the analysis.

Because of the major importance of the elasticity in application, the detailed
theoretical results presented here are essential. They do not follow directly
or easily from the available results in the literature.

In Section 2 we introduce the weighted Sobolev spaces and countably
normed space. The variational solution of the elasticity problem with data
given in weighted spaces is addressed in Section 3. Section 4 gives a

complete analysis of the elasticity problem in an infinite angular domain.




In Section 5 we prove the regularity theorems for the elasticity problem in
polygonal domains in terms of the countably weighted Sobolev spaces.
The methodology and techniques used for the elasticity problem can be

used for general elliptic systems of equations.




§2. PRELIMINARIES

The notations and definition of spaces in [14] are the ones most often

used in this paper. Let Q denote a polygon with vertices Ai and open

edges Fi connecting Ai and Ai+1' 1 <1< M(AM+1 = Al) shown in Fig. 2.1.
Let D and ¥ be subsets of M = {1,2,...,M}, D =N, O = U F, and r! -
ied
U Fi. r=8q-= r° U 1 Let B = (Bl""’BM) be M-tuple of real numbers,
ieN

M
0<By <1, 151sM and B, =TT r§‘+k(x) where k 1is an integer and
i=1

ri is the distance between x and vertex Ai'

Fig. 2.1 Polygonal Domain

By Hk(ﬂ) we denote the usual Sobolev spaces and by Hk’e(ﬂ) the

B
weighted Sobolev spaces for integer k, ¢ k 2 ¢ 20 with the norm
k
2 2 o 2
lhull = [Jul + E e D ujl
8 -1 B+lal-¢ 2
Hy o) e & L2(a)
2 a 6Ia|u
(if ¢ =0, the term |u drops out) where Du =u =z —
-1 a, « a, «
H™ () x lx 2 ax lax 2
1 72 1 772
= 0,0
« = (al,az). @ 2 0 integer, 1 = 1,2. We shall write HB (Q) = LB(Q).




For convenience, we use the spaces Hg’e(Q) instead of Hg’e(Q) if Q

is finite or infinite sector, with the norm

2 - ¢
tai? = wd, el T BpyR

KB’ (Q) H™ "(Q) L7(Q)

2 o 6'“'
(if & =0, the term |u| drops out) where D'u = u =
-1(Q) a, a a, «
H 1.2 1 2
r e ar “ae

(r,8) 1is the polar coordinate, a 1is the same as above.
The spaces WE(Q) introduced by Kondratév (see [16, 17, 18]), are used

in this paper as well in polar coordinates, and

Ilullik = Z I r‘zm-hai)li)aulzrdrde.
B(Q) lel <k Q
Let D = {(r,8)|, - < T <w, 0< 8 < w}, and for integer k 2 0 and

real h > 0 we define
H]}:(D) = {ul Z I eZhTID“ulzdtde = ||u||2 < oo}.
oslalsk © Hy (D)

We shall write Hg(D) = L’h(D)'

The countably normed spaces Bé(m. £=0,1,2, are defined by
l - 'z (* 4 k-l
Ba(@) = {ulu ¢ Hg' (), 195, D ) S S8 -0L,
for |a|] =k = ¢8&1,..., with C,d 21 independent of k},

and 3;(8) is defined in polar coordinates on finite sector S = {(r,8)]|

0<r<sg§, 0<08 <w by
cd k-0,

38

() = {ulu e x‘;"(S). B trege,

-4

LZ(S)
for |al =k = ¢ 8&1,..., with C,d 2 1, independent of k}.
We shall write Bl(Q,C,d) or $t(S,C,d) if we emphasize the constants C

B B
and d.




172,8-1/2, m and B£-1/2(rm)

The spaces Hg- (r-) 3 are defined as the trace
spaces of H;’e(ﬂ) and Bé(ﬂ) on rm. m=20,1, £=1,2, and
inf |G

igh . _ _ =
qe1/2, 8 1/2(1.m)

£ 2, .
. Gl _a=g H‘; Q)

We shall use the notation Dku and ﬂku which are defined as

1D%ul? = Z 10%)2
lai=k
and
125012 = Z 202 g2

fai=k
The theorem on the equivalence of weighted Sobolev spaces defined in

Cartesian coordinates and polar coordinates will be used later. We gquote the

foilowing theorem from (2].

Theorem 2.1 (cf. Theorem 2.1 of [2]). Let S be a finite sector = {(r,0)|

0<r<d3, 0<0O < w, ¢B = PB, 0 <8< 1, then for 0 £ ¢ < 2 integer,
;(S)) if and only if u e Rg’z(s)(resp. 3;

ue Hg‘e(S), (resp. B (s)). a

We denote the vector and vector space by bold face. For example, u =

(ul.uz)T, Hk(ﬂ) = Hk(ﬁ) X Hk(ﬁ). Bé(n) = Bé(ﬂ) X B;(Q), etc. The theorem

quoted above holds for vector spaces Hg'l(S) and )ﬁg'e(s) (resp. Bé(ﬂ)
and :aé(m) as well.




§3. VARIATIONAL SOLUTION OF ELASTICITY PROBLEM WITH
DATA GIVEN IN WEIGHTED SPACES

Consider the linear plain strain elasticity problem on polygon Q

_ _ a (g dupy _
(3. 1a) 3 By in Q

e, - o —zc L,

ul = zo = GOI

r° r°

(3.1b) 1 1

T = o-nl 1 =8 = G| 1

r r
11,01
where u = (u » Uy ) is displacement, and o = is the stress
1 021,022

tensor given by

o B Qa2
(011 2u axy * A X1 * aX2]
- ou B2,y AW, 34
(3.2) 1955 = 2 e + A %1 + asz
= = W a_u.
L°'12 T21 T H @xz * axf]

A and u are Lamé coefficients, n 1s unit outward normal to 4R, the force
£ = (fl,fz)T, the boundary condition gt = (g:,gé)r, Gt (Ge Ge)T etc.
Using the differential operator L and the boundary operator B we

write (3.1) as

lu=+¢ in Q
(3.1%)
Bul. = [80.81]

Theorem 3.1. Let f el _(Q) = H (n) gl € H3/2-£,3/2—£(rt)’ ¢=0,1, and

B B
|r°| 2 0, then problem (3.1) has a unique solution u e HI(Q) (in the weak




sense), and

(3.3) [full < C[IIfII + Z g II ]
lq) Ly(a) H3/2 -4,3/2- L,

¢=0,1

Proof. First we assume that go = 0. The bilinear form on Hé(ﬂ) x Hé(Q) is

= duy dv; , dup 9vg uy , 8up|(dvy , Ova
(3.4) B(U,V) - In{zu[axl ax1 * 5;; aX2 v A axl * aX2 aX1 * ax2
dup du, Q!g dvy
tH [33_(? * m] [ax, Y 5% xdy
where Hl(ﬂ) = {ulu € HI(Q) ul = 0}
0 S o ’
Owing to Lemma 2.9 and 2.11 of [2] we have
[ glevasi scug'l g IVl Vve wl(a).
rt HB ’ (r*) H (Q)
From Lemma 2.10 of [2] we have f € (HI(Q))’. and
|f Fovax| S C ISl (o) IV, . Vve w(q).
Q B H (Q)
Hence
F(v) =I £ovdx +I glev ds
Q rt
1s a linear and continuous functional on HI(Q). and
IFll < C[Ilfll + lll i ]
(HI(Q))' LB(Q) 1/2 1/2(r )

Ha

The varlational problem is to seek u € Hé(ﬂ) such that
B(u,v) = F(v) for any v € Hé(n).

There is a well-known Korn lnequality, i.e., for u e Hé(ﬂ). ll‘ol z 0,

2 2
al.h auz 1 6u1 aU2
c "u" s I {[8)(1] [aX2] * 2 [aX2 * a)q] } dx < C "u" ,
ul(a) Q i ()




where C1 >0 (i =1,2) are independent of u (see [17]). Applying the

Lax-Milgram theorem, we have existence and uniqueness of the weak solution of

(3.1), and (3.3) holds. If go 20, let w=u- GO. then w € Hé(Q)
satisfies
1 BGO 0] 1
B(w,v) = J fevdx + I [g - ———}-vds - B(G,v), ¥ ve H (Q)
Q r.1 an 0

F(v).

Obviously F e (HI(Q))’. Applying the result above we obtain the existence

and uniqueness of the solution of (3.1) in general (in the weak sense).

§4. AUXILIARY PROBLEMS ON INFINITE SECTOR

In order to analyze the behavior of the solution at the corners of , we
consider the elasticity equation (3.1) on an infinite sector Q =

{(r,8)|0 <r <w 0<08 < w. We prefer to write the equation in polar

, o
coordinates (see e.g. [25]). Let u = (u ,u )T and o = [’rr re}’ f =
r e o.,0
er’ 66
, T _ [cos8, sine - _ = _ £ _ ¢ -
(Lr,fe) , etc., and let A = [—sine,cose]' Then u = Au, f = Af, g = Ag , o

= AcAT. u satisfies

du u u du
1 2 e a r r 1 0] _
“[Aur 2 Ur 2 69] (A + ) ar ’Lr;r M +F69] =f.
(4.1) in Q,
du u u du
1 2 r 14 r r 1 0] _
“[A“e rz“e"rza] A+ g e[:r"r+r’~ae]‘fe

and o is given by

du u u 1 aue
o =2u._P+A ._r+_r+__}
rr ar r




du u u u du
_ 1778 r r r 17796
(4.2) "ee'z“[Fa—e‘*r—]”[;*r*Fa_]

re = ° ra 'a .

. 1 auP aue u9
re or

One of three kinds of boundary conditions may be imposed on 8Q, namely

= 0 _=0 - -
(4.32) u Ie=0,w =g =G lc=0,w (Dirichlet condition)
(4.3b) T | = (0,0 )] = El = & (Neumann condition)
) =0, w re’ 6o 6=0,w
— _ 0 _ =0 T I | . L
(4.3¢) u |B= = gy = G le=0 , (cre,wee) l9=w =8, = G |6=w (Mixed condition).

Hereafter, Et denotes the different vectors Eé Ee(r,O) and Eﬁ = Ee(r,w)
in the trace sense at 6 = 0,0w. Let L(D) and B(D) be corresponding
matrix-differential operator and boundary operator. We rewrite (4.1) and

(4.3) as
(4.4) (L(D), B(D)IG = (F, &°, &l.

By the change of variable T =& % , we convert the equation (4.1) and

boundary condition (4.3) into the problem L(u) =f ona strip domain D =

{(r,8) | -« < T <, 0<8 < w, i.e.,
[ 2 2 2 ~
u a u a ug dug
-(2u+A) 5 ut] S M4 (g + A) 3730 * (3 + A) 38 - fT
T ae
(4.5) 4 in D
azﬁt au_ azﬁe azﬁe L
:(M*A) 3730 (3 + A) e " Tl o - (2u + A) ° + y.ue = fe

with one of the following boundary conditions:

10




~ _~0 _ ~0 .
(4.6a) u '9=0,w g =G |9=0,w' (Dirichlet condition)
(4.6b) F=(_,507 =3 =8 (Neumann condition)
* 10’ " 906 6=0,w’
~ _~0 _ ~0 ~ _ g~ o~ T o~ o~
(4.6c) Ulgg=8 =6 |e=0’ T=1(04959) lg= = 8, =G lg,
(Mixed condition)
~ o~ T -t -t T ~¢ _ ¢ &T _  -tt, L -t

where u = (ut,ua) = (ur(e ,8), ue(e ,0))°, G = (GT.Ge) = e (Gr(e ,0),

-T T _ 2.3 34T -2t -T -7 T, and
Ge(e ,8)), 2=0,1, £ = (fT, e) = e (fr(e ,8), fe(e ,8))

~ ~ ~ ~

- Gt a - - Uy . aut - aue
(4.7) 0 = b %"'aT'“e]"’ee=2“ ae—*“z]”‘['a—f*“r*ae—]-

Further, by Fourier transformation we obtain a system of ordinary

equations
[ dzut 5 - duy .
H st (2u+A) (1417 )u_ + (in(u+d) + (3u+d)) — = f
T de T
de
<
(4.8) - 2~
dut d"u 2 - -
-((3u+A) - in(u+r)) 3 (2u+a) + u(1+n )ue = fe
. de

with one of the following boundary conditions:

(4.9a) u|e=0,w =g =G '9=0,w , (Dirichlet condition)
(4.9b) %l = (; o )Tl = ;1 = &11 (Neumann condition)
) 6=0,w 10’ 08" '6=0,w 6=0,0 '

s e e
T= (0,99 lg=0 = 8, = G lg=y

(Mixed condition)

(4.9c) ule=0 = &, G |9=0 )

where u = (ut,ue) =‘(3(ut), 9(u9)) = ¥(u), etc.,

11




F(a) = —— jm e Mu(r,0)dt, n =€+ 1h, @< £ <w, h >0,
V2 Y-
and
L - ~ ,
(4.10) T = ME;;-'- (1n+1)u9] v Tog = (2u+A) et (2u+A-iAn)ut.

By i(De,n) and B(De,n) we denote the matrix-differential operator and
boundary operator. Furthermore, we write the system and the boundary

condition as

~0

(4.11) 'u(n):x = [ﬁ(De,n). é(De.n)]:l = [;‘, .&1

] (or (£,8°.81.)

The operator U(y) = [L(De,n), B(De,n)] depends polynomially on the
complex parameter 7. By the argument used in {14] for all 7, with the
exception of certain isolated points, U(n) realizes an isomorphism:

2

HZ(I) = LZ(I) X HZ(I) X Hl(I) (or LZ(I) x C% x C2). Consequently, the

1 is an operator-valued meromorphic function of

inverse operator R(7n) = U(n)
n with poles of finite multiplicity. These poles are the eigenvalues of
U(n) (see [10,16,18,19,20,21,22]). For each pole 7 of R(n), the
homogeneous problem of (4.11) has at least one non-trivial solution
corresponding (eigenvector function) in H?(I). The transcendental equations
which the eigenvalues satisfy have been derived in several different ways and
can be seen in the literatures of continuum mechanics and mathematics (see
e.g. [10, 24, 26, 28]). The typical approach is to consider a biharmonic
equation in Q 1instead of the elasticity equations. Since we adopt the
displacement u = (ur,ue)T in polar coordinates in (4.8) and (4.9) the
coefficients of the operator i(De.n) and Q(De,n) are constants. Hence we

are able to derive the transcendental equations directly from the homogeneous

equation (4.8) and the boundary condition (4.9) on displacement and traction.

12




Since these equations are not of the main interest in this paper we will
present them in a lemma below. For completeness we include the proof in the

Appendix.

Lemma 4.1. Let 7 = iz be an eigenvalue of U(n), and v be the Poisson
ratio. Then
(i) for the Dirichlet problem (4.8) and (4.3a), z satisfies

2
2. _ [ = 2
(4.12) sin“zw = [5335] sin“w,

(ii) for the Neumann problem (4.8) and (4.8b), z satisfies
(4.13) sinzzw = zzsinzw ,

specially m =0 1is an eigenvalue with multiplicity of 2, the corresponding

eigenvectors are e, = (cos 6, -sin e)T and e, = (sin 6, cos G)T,

1 2
(iii) for the mixed problem (4.8) and (4.8¢c), z satisfies
2 2
2, _4(1-v)” _ =z 2
(4.14) sin"zu = 3-5g Sinw

and n = %1 (i.e., z = #1) are the eigenvalues with multiplicity of 1 if

(1 + %) cos 2w + 1 = 0. a

From the equation (4.11) ~ (4.13) it is easily seen that zeroes of these
equations are symmetric with respect to the origin and the real axis in
complex plane. Hence the eigenvalues of U(n) are located in the complex

plane symmetrically with respect to the origin and the imaginary axis. By T

n
we denote the eigenvalues, and let <y be a positive number such that
(4.15) Ky = min Imn = min | Im7n|
neT neT
n L
Im >0 Im =0

Next we prove the Agranovich & Vishik conditions I and II which are

substantial to the key inequality (4.17) (see [1]). These two conditions were

13




used implicitly or explicitly in many papers, e.g., [26] for elasticity

problems and in [21,22] for general elliptic systems.

Let Du=1i g% and AO(D,n) be the principal part of the operator

L(De,n). We write AO(D,n) in matrix form

. n2(2u+h) + uDZ (pu+A)nD
A.(D,n) =
0 (u#A)nD un> + (2u+a)D°

Lemma 4.2. (Condition I) For £ € R1 (real), n € £¢1 = {n| larg 0l < ¢1 or

larg n - n| < ¢1} with any ¢1 € (0,n/2) and |[nl| + |€] = 0, det (AO(E.n))
# 0. Furthermore, the equation det (AO(C.n)) =0 in ¢ has equal numbers

of roots in upper and lower half-planes for 7 € £ and 7 = 0.

(2}

Proof. It is easy to see that

det (A (€,m) = p(2usA) (n2+62)% = 0

for £ € Rl, nezs with any ¢1 € (0,n/2), and €| + |0l = 0. Also it is

2]
seen that £ = ¢ in are the roots of the equation det (AO(C.n)) =0 in ¢

(complex). Hence the equation has 2 roots in upper and lower plane, respec-

tively if 02 npe X, . o
-5}

Let BO(D,n) be the principal part of the boundary operator é(De,n)

defined by (4.10), and 90 = 0 (resp. w), Ie = (0,w) (resp. Ie = (~o, w)).

Then we have the following lemma.

Lemma 4.3. (Condition II) For any ¢1 € (0,n/2), iIf =0 and 7 € 2¢
- 1

= {nl larg n - n| < ¢, or larg 0l < ¢1}, the equation on the half line

AO(D.n)H = 0, 0 € Ieo
(4. 186) -

~ -~ =h
BO(D.n)‘qezeo

14




has a unique stable solution W such that |W| —0 as 6 —« (resp.

8 > -mw).

Proof. We will prove the lemma for @, =0 and I_ = (0,w). The proof for

o 8o
90 = w 1is similar with what follows. For the homogeneous equation (4. 16)
1

the solution W must have the form ebe[:
2

] with b satisfying the
equation

det (Ronb,n)) = u(2u+A) (b2-02)2 =

Hence b = #n are the roots with multiplicity of 2. For n e £ and 70 =

(2}
A+3u
A+

- W 1 6 + ao/7
W= wr = cleome + czeane
2] ai aig

is the stable solution if <, and ¢, can be uniquely determined by any

given boundary condition h e C2.

O, Reb=Ren #0. let a=-sgn (Rey), o =

C and c

For the Dirichlet condition Ule =6 satisfy

T

Then obviously <y and ¢, can be uniquely solved from the equation above.

For the Neumann condition we have by (4.10)

2

dwr -
-~ -~ “" == - i‘.l“nw
BO(D.n)w = X a
- ik'nwr + (2u+Ar) Je .

Then the Neumann boundary condition B(D,n)W = h leads to

2un u(1+o) cy -
=h.
12um  1(2p*a(1-0))) |62

15




Since

2un p(1+0) >
det = 12un (A+p) (1-0) -i4u™n = O
i2un  1(2u+Aa(1-0))

o

for n=+0, ¢ and c¢ can be uniquely determined ty Therefore (4.16)

1 2

has unique stable solution for 75 € X and 7 # 0 and

(-}
Wl sC.ePP , a5 8—w

with c0 >0 and bo = -|Re 7l

After verifying the conditions I and Il we have the following theorenm.

Theorem 4.1. Suppose there is no pole of ®R(n) on the line Immn = b, then

the solution u = ﬂ(n)[f,GO,GI] of the problem (4.8) and (4.9) satisfies

(4.17) i, Cemfi®, sc ib?, - ) et
(1) L(n) G e, B
o 2 g v gl
£=0, 1

Proof. Due to Lemmas 4.1 and 4.2 the conditions I and Il are satisfied on an

angle 21 = {n: larg nl < ¢1 or larg n - wl| < ¢1} with ¢1 € (0,n/2). By
Theorem 6.1 of [1], (4.17) holds with C independent of 7 and u if 7 € I

and |[n| > Ny where n, is some positive real constant. The line Im#n =1b

1

is contained in 21 except a finite segment for which |Re n| < |b| cosec ¢1.

Hence (4.17) holds for m on the line Imm =b with |n| > Ny- For those

n on the line with |n| < Ny R(n) 1is analytic. Hence for ; € LZ(I), gZ €

Cz. the solution u exists in HZ(I), and
wi?, smfa®, s cadmban®, o« ) aghiagh®
(1) L3 ‘ a5,

16

PSR




sc e, o+ Z 1642

a5, o
3-2¢, ,78.2 .82
e Y mPogditagli®y
&=0,1

where C2 and C3 are some constants independent of u and 7n. Thus we
have proved (4.17) for 7n on the whole line Im n = b on which R(n) has no

pole. o

Lemma 4.4. Let T be a strip = {nl-h < Im < h}, 0 < h < «,, then R(n) has

1’
no pole in J for the Dirichlet and mixed problems, and the origin is the

only pole of R(n) in J for the Neumann problem.

Proof. Due to the definition of Ky and Theorem 6.1 of (1] R(n) may have
poles on a finite segment of the real axis. We shall show that there is no
pole of R(n) on the real axis for the Dirichlet and mixed problems and the
origin is the only pole of R(7n) on the real axis for the Neumann problem.
(1) Suppose that 7 = £ (real) is the pole of R(n) for the Dirichlet
problem, £ satisfies

- 4+ Sin w
sh§w = % 3=au & -

But Lemma A.1 shows that for € =0 and w = kmr, there is no non-trivial
solution of (4.8) and (4.92a). Hence we may assume that w # kn. Let f(§) =
shw€ - |sin wl€, then f’(§) = wchfw - Isin wl 2 w ~ |sin w| > 0. Hence f(£§)
>0 for 0 < § < ® Similarly, we can show that f’(£) <0 for -w < € < 0.
Therefore |shfw] > |sinw| €] > 5:%; Isin w| |€] for real £ # 0 and

v € (0,1/2), which implies that the zero is the only real number which
satisfies (4.12). Since zero is not an eigenvalue, R(n) has no pole on the

real line for the problem with the Dirichlet boundary condition.
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The proof for the mixed boundary condition is similar.
(11) Suppose 7 = € (real) is a pole of R(7m) for the Neumann problem. Then
£ satisfies
shéw = *€sin w.
It has been proven in (i) that |shéw| > |€| Isin w| for € € (-w,®)
and £ # O, hence, on the real line, (4.13) is satisfied only at the origin.
Lemma A.2 has shown that &§ = 0 1is the eigenvalue with multiplicity of 2,

the corresponding characteristic subspace is spanned by e, = (cos 8, -sin 9)T

1

and Eé = (sin 0, cos O)T. o

If h=20 is selected in ( KKy }, there is no pole of R(m) for the

Dirichlet, Neumann and mixed problems on the line Im » = h. As a conse-

quence of Theorem 4.1 and Lemma 4.4 we have Theorem 4.2 and Theorem 4.3.

Theorem 4.2. If f € Hg(D), Ee € Hi_e(D). £=0,1, 0 < h<«k,, then equation

1’
(4.4) with boundary conditions (4.5) has a unique solution ue Hi(D) and

jal £ 2
(4.18) uo“?quh(D, sc [uin 0 * Z &4, ]
Ko o, BT
"50" (resp. u&ln 1 ) is absent in (4.18) for the Neumann problem
I£.(D) H_ (D)

(resp. the Dirichlet problem).

Theorem 4.3. If F e Ly(Q), gl e vg“(o). 1=0,1,0<8<1, B>1-x

and then the equation (4.1) with boundary condition (4.3) has the unique

1’
solution u 1in H;(Q). and

(4.19) vl sc [ufu 1t || ]
wgco) L@ z @

¢=0,1
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where uépu (resp. nalu 1 )} drops out in (4.19) for the Neumann
Va(Q) W3(Q)

problem (resp. the Dirichlet problem).

Remark 4.1. The proof of Theorem 4.2 and 4.3 is similar to those for the
Poisson equation in [2]. The shift theorem in the space Hk p(Q) for general
elliptic systems was given in [21], where the Agranovich-Vishik’s conditions

are used, and the shift theorem in Ug p(Q) for the plane elasticity problem

was given in [26] without verifying the conditions.

Remark 4.2. The shift theorem can be easily generalized to any k > 2, namely

- - ¢
I3l scC [ufu P . ]
u‘;(Q) v 2(qQ) Z w‘;*z ‘Y

B &=0,1

provided f € Hg—z(Q) , El € Vg_e(Q) and there is no pole of R(7n) on the

k + 1 - B. But in practical problems the shift theorem is less

applicable for k > 2 because of very strong conditions on f and 58 in

line Im 7

the neighborhood of the origin, for instance when f and 5; are analytic

and vanish rapidly at o, but do not belong to Ug(Q), k 2 2. Hence the shift
theorem for k > 2 1is not directly applicable to these problems with analytic
or piecewise analytic data (see [22]). For this reason we addressed the shift
theorem in the space H;(Q) only for k = 2, and will address it in the space

Hg’l(Q) for k > 2 1in Section 5 .

Corollary 4.1. If 50 vanishes at the origin and C—;le Hg_t’z—e(Q) then

{4.19) can be rewritten as

(4.19') fhui) sC [n?n + G} ]
L.(Q) 2 -¢,2-¢
vg(o) 8 ot ng Q)

Proof. By Lemma A, 2 of (2] 6‘ € HE-C(Q). ¢£=0,1, and
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165

2t S © I1GH 2-t,2- 2
B
Then (4.19°) follows easily from (4.19). a

Corollary 4.2. Let u = A-lﬁ denote the displacement in Cartesian
coordinates and u € HE(Q), 0 < B <1 be the solution of (4.1) and (4.3).
Then u e HE(Q), and there are constants <y and 5 > 0 independent of u

and u such that

(4.20) c HUH < lull HUH

uz(o) ug(o) UZ(Q)
Proof. Since
u1 = ur cos O - ue sin @
u2 = uP sin 6 + ue cos 6
obviously [rf 2y ) HrB-ZEu < Gl . Further note that
(o)) 12(qQ) HZ(Q)
22 2 2
}—au1=-1—Curcose-auesine] -i[‘&sine-a&cose]
P2 ae2 r‘2 e2 ae2 PZ ae a6
' 1
-3 (ur cos 8 + ug sin 0) .
r
8-2 62u
Then we have |r 5 It 5 <C ﬂuu Similarly we can prove that for
88° L2(Q) wz(o)
0 £k 52,
-2+k k
i ?, s cm?
12(Q) HZ(Q)
B
which ylelds
fai sC Huu
wg(o) HZ(Q)
In the exactly same way we can prove the other half of (4.20). (u]
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For the regularity of the weak solution of (3.1) we are interested in the

special auxiliary problem for which f and Ge vanish for r > 1.

Theorem 4.4. Let u € Ug(Q) be the solution of (4.1) and (4.3) with

f e LB(Q). El 1 and let u = A-IG
=2

be the displacement in Cartesian Coordinates. If f and G, £=0,1

eug“'z"(o).e=o,1 0<B<1, B>1-k

vanish for r > 1, and EO vanishes for r = 0, then for the problem with the

Dirichlet boundary condition (4.3a) and mixed boundary condition (4.3c)

(4.21a) itad, e, <w
2@ )

(4.21b) i, e, <w
12 R0)

and for the problem with the Neumann boundary condition (4.3b)

(4.22) umluv.zz <w.
L™(Q)

Proof. We first prove (4.21) for the Dirichlet problem. Select B‘ such

that 1 < B’ <1 + «k Then B >1>8 and -k, <1 -8 <0<1-8<k

1’ 1
Due to Lemma 4.4 R(m) has no pole between the line Imn =1 -8 and the

line Imp =1 - B8’. Because f and Ec, ¢£=0,1 vanish for r > 1 and

1

56 = 0 at the origin, f € L_,(Q) and g e wgffq), & =0,1. By the argument

BI
of Theorem 4.3, u € Hﬁ,(Q). Thus we have

W 00
(4.23) I J' [w16|2 + |r'16|2]rdrde
071
®f (B -1),1=,2 . 2(8'-2),=,2 2
< rf [r ID'ul® + r B lul ]rdrde S |lull ;
01 wgto)

On other hand we have
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w 1
(4.24) I J' [lﬂ)lilz + |r 1G|2]rdrde
0“0

w 1
< J' I [rZ(B 1)|DIG|2 + 2(B 2)16|2]rdrde < "5"2
0’0 v, (Q)
B
which together with (4.23) yields (4.21a). Noting that

u 8u
1.2 .1-2 -1-,2 2 e Y 1- -1-.2
ID'ul™ = ID7ul™ + |r "ul™ + ;5 E;a— U - 39- ue] < 2[!? ul + |r “uj ]

Ir_lulz = |r~16|2

we have (4.21b) immediately.
The proof for the mixed problem is similar and will not again be
elaborated here. Next we prove (4.22) for the Neumann problem. Let B’ be
selected as above, then by Lemma 4.4 the origin is the only pole of R(7n)
_.
between the line Imn=1-8 and the line Imn=1-8’. Let u =
~ 1
u (&n =~ 0) and
1 o+i(1-8')

u*(t,0) = —— f
VIR J-oti(1-8")

R(n)(£.8'] e dn .

Arguing as above u® is a solution of the Dirichlet prcblem (4.1) and (4.3b)

in "2'(0)’ By Theorem 2 of [26]

u=u* + ae, +aye,

where ;1 and 52 are defined as in Lemma 4.4. Let u = A '@ and

u* = Aniﬁ‘, then

u=u® + (cl.cz)T

and

|»1u'2 - |”1“,'2
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Note that

w 1 w 1
(4.25) f f 19 u|2 rdrde = J f [lﬂlﬁlz N lrlﬁlz]rdrde
0“0 090

1A

I I [ 2(8- 1) l + PZ(B_Z)IEIZerrdG

HuH

IA

wz(o)

and

() 00 W o™
(4.26) I f 19'ui® rdrde = f I 19 u* 12 rdrde
0 0

< I J' [ 2(8’- a*12 + 208 '2)|6'|2]rdrde
u* II
Ve, ().
Combining (4.25) and (4.26) we get (4.22). (s]
Since Ii)lul2 = IDlulz, |m1632 = IDll-xI2 we have the following corollary.

Corollary 4.3. Let u and u be the same as in Theorem 4.4. Then for the

problem with Dirichlet condition (4.3a) and mixed condition (4.3c)

(4.27a) DR , ur'lauzz <w,
L (Q) L7(Q)

(4.27b) iD uu . ur'lumzz <w,
L (Q) L™(Q)

and for the problems with Neumann condition (4.3b)

HD ull < . o
(4.28) LZ(Q)

Remark 4.3. (4.21) and (4.27) may not hold for the problem with the Neumann

condition, (4.22) and (4.28) may not hold for u.
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§5. REGULARITY OF SOLUTION OF THE ELASTICITY PROBLEM

We shall first discuss the regularity of the weak solution of the

problem (3.1) over the polygonal domain Q with f € L_(Q) and

B
¢ H2-Z.2-£ . :
G € 3 (Q), namely the relationship between the weak solution and the

solution of the auxiliary problem over an infinite sector Q with f and

G! having a bounded support. Then we shall derive the regularity of the

solution of the problem (3.1) in the countable weighted Sobolev space.

Assume that A1 is located at the origin and Fl

xl—axis. Let (r,8) denote polar coordinates, and let & € (0,1) and S6 =

{(r,8)|10<r <38, 0>8c<w ¢ Let ¢6(P) be a cut-off function in

lies in positive

c®R!) such that ¢5 =1 for 0<r<2 and ¢5 =0 for r >3 If [, U,

2 1
¢6(r)u, otherwise v = wa(r)(u - GO(AI) where u =

- T
c rl, let v = (vl,vz)

(ul,uz)r € Hl(ﬂ) is the weak solution of (3.1). v 1is extended to Q =S =

®
{(r,8)|0 < r<w 0<0 < w Dby zero extension outside Sa.
Theorem S.1. Let u be the weak solution of the problem (3.1) with

felL.(2) and 6% e nﬁ’e’z'e(m, 0<B8>1, B> 1=«

8 1’ and let v = ¢6u if

Fl v FM c Fl and v = ¢8(u - GO(AI) otherwise. Then
0 0 0 _
(1) 1If Fl < or FM <crl’, or Fl v FM ¢, then v = U;(Q). and
2
L
G125 ["f"‘-p‘sa’ DAL PEPTIEE L NN )].
B L=1 B L] d "&8/2
1 2
(i1) If T, vl ,cT’, then (v- [ c.e ) € W.(Q), where e, =
1 M i1 B8 1
i=1,2

T T

(1,0)°, e, = (0,1)°, Cy» i =1,2 are some constants, and

1
G v F e, sc (11, (s, * 10 gy e

i=1,2 8 B g (Sa) H (S\S ,,)
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Proof. (i) We prove (5.1a) for the case Fl v FM < FO (Dirichlet boundary

type), the proof for the mixed boundary type is similar with what follows.

At first we may assume that G0 =0 at Al’ then v satisfies

(v) = ¢

Gf + Ll(u, ¢6) =f in Q

(5.2) 0 _~0
Vig=0,0 = %% |6=0,0 = & |6=0,0

where L,(u,¢;) is a sum of terms p%up® 5, with 0 < lal 1, 15 fa’'| 2.

Obviously E, EO and v vanish for r > 3 and

+ {ull 1 .
H (56\35/2)

(5.3) ﬁh(msc[ﬁh

g (SS)

B

For w e Hé(Q) = {w] MDlwu < o, w 0} we have

2 0=0,w _

L™(Q)
B(v,w) = I f + w rdrde , Yu e Hé(Q)
Q
where B 1is the bilinear form defined in (3.4).

On the other hand, by Theorem 4.3 and Corollary 4.1~4.2 there exists a

unique solution z = (zl,zz)T of (5.2) in V;(Q), and

. ~0
(5.4) Il SC“ﬂ + 189 }
v(Q) Lg(Q) Q)
8 3
scliel gy +16% 5, ol ,
8' S5 Hi’ (S,) H' (S \S; )
and owing to Corollary 4.3 "Dlzu 2 < @ .
2(Q)

Let ﬁé(Q) = {w|lw € Hé(Q) with bounded support in Q}. Thus we have
B(z,w) = I f + wrdrde , VW € ~é(Q);
Q

hence
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B(z-v,w) =0 Yw € ~é(Q).

Since ﬁé(Q) is dense in Hé(Q), B(z-v,z-v) = 0. Therefore (z-v) can only

be a rigid body motion. Due to the Dirichlet boundary condition

v=2z € HZ(Q).
If Go # 0 at the origin, let u=u- GO(AI) and v = ¢6;' Then we
have
L(v) = ¢,f + L, (u.¢) = in Q
Vigo , = 95(6°(r,0) - GO(AI))‘ - E‘ .
' 6=0,w 6=0,w

Obviously £ € L_(Q) , £ and & vanishes in Q for r > 8. Applying the

B
results above to v we have that v = ¢5(u - GO(Al)) € Hg(Q) and (S. 1a)

holds.

(11) If T, uTl,c rl, v satisfies

L(v) = ¢,f + L (u,¢;) = f in Q

(5.5)

= ¢58' + ¢ (0] =g =&

T(v)|
6=0,w

=0, w 0=0,w

where Ll(u.¢6). f are the same as in (i), and tl(u,¢5) consists of terms

uD“¢6, lal = 1. Obviously Gle H;(Q), and

(5.8) i6h,  sc [uclu

Hb(Q)

+ ul ]

(Sa) H (S.\S_ ,,)

1,1
Hg 5 \°5,/2

and ?,E‘ and v vanish for r > & For any W e il(Q) = {H|HD1UH 5 < o}

L™(Q)
B(v,w) = I f-wdx + I El-wds.
Q aQ

On the other hand, by Theorem 4.3 and Corollary 4.1~4.2 there is a unique

solution z = (zl,zz)T of (5.5) 1in Hg(Q) and
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< ~1
<c [ufu + 18 ]
uﬁto) Leg(@ w}s(Q)

(5.7) lzll

by (5.3) and (5.8)

+ Juf 1

(Q) H (55\56/2)

1
sc [if1y (s, 16 4

B 8

and by Theorem 4.4 nDlzn 5 < .
L™(Q)

1(Q) = {wlw e ﬁl(Q) with bounded support in Q}, then =z

Let ﬁ
satisfiles
B(z,w) = J. fudx + §1°uds, Yw € ﬁl(Q).
Q aQ
Therefore

1

B(z - v,w) =0, Vw e i (Q).

1

Since (Q) 1is dense in ﬁl(Q) we have

B(z -v, z-v) =0,
which indicates that the strain energy is zero, z - v represents only a

rigid body motion, i.e.,

3
e Y e,

i=1
where e, = (-y.x)T, and ¢ i=1,2,3 are constants. Because D1(z -v)
€ LZ(Q). ¢y = 0. Then (S.1b) follows from (5.7).

Corollary 5.1. v 1is continuous in @, and (v - v(Al)) € UE(Q).

2
Proof. If T VT, c Fl, by Theorem 5.1, (v - [ c.,e. ) € H?'Z(S ) for any
1Y M & 510 B “Rg
2
R, > 0. Hence (v-7 c.e ) € %5, ) (see [2]), therefore v 1is continuous
0 14 ©1% Ro

2 2
~ ) 2 B-2, 2=
in Q. Since (v 1Elciei) € B(Q). 0<B<1, r “Uv 1§1c1e1) e L (SRO)
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which implies that Z cie; = v(A,) and that (v - v(Al)) € UE(Q).
i=1 *

If Fl c r° or FM c r° by Theorem 5.1 v = ¢6(u - GO) € U;(Q). Hence
v e Hﬁ'z(sRo) for any Ry >0, thus v - GO(AI) € c°(§RO), and v is

continuous in Q and V(Al) = GO(AI), and (v - V((Al)) € Ug(Q).

Corollary 5.2. Let u = (ul,uz)T and u = (ur,ue)T be the weak solution of
(4.1) in Cartesian and polar coordinates, respectively. Then (u - U(Al))
< wz(sa/2 and (- u(A))) e w"’(sa/2 and

1

(5.82) lu-u(A,)| [ufu Z 16k + lul ]
Lg(Ss) b2 ls (s \s. _)

IA

UZ(SS/Z 2=0 8 £ s 78/2

(5.8b) |5-5(A )u“z(s s [“f"LB<s ) Z PP TN )].
5/2 2=0 2] Ss s “5/2

Proof. Note that v=u and v=u in S then (5.8a) and (5.8b) follow

8/2’°
easily from Theorem 5.1 and Corollary 5.1.

Remark 5.1. The regularity of the weak solution of the elasticity problem in

polynomial domain was addressed in [26]. It was concluded in [26] that v =

P .u € "2(0) with B=1+¢, € >0 arbitrary provided f € L_(Q),

3 B

¢t e V42740, and R(n) has no pole on the line Im 7 = -e. Actually the
condition B > 1 1is not necessary. Theorem 5.1 indicates that v € HE'Z(Q)
K

or (v - V(Al)) € Ug(Q) if B>1 -« is the smallest positive

1° 1
imaginary part of eigenvalues of the operator R(7n), which depends on the
geometry of the domaln, the type of boundary conditions and the material

properties. The condition B > 1 - k., precisely reflects the nature of the

1
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singularity of v. If Ky £ 1, then v € Hg’Z(Q) with B e (1 - kl'l)' or if
kl >1 then v e HZ(Q). and v can be even smoother. We will elaborate on
this later. Nevertheless there always exists some B € (0,1} such that v e

Hg’z(q) and (v - v(Al)) € HE(Q). The improvement above is substantial.

Lemma S.1. For B e (0,1), k2820, 0s¢€<2 and E(Al) = 0 there exists

cl, c2 > 0 such that

IA

(5.9) e, Il i e, Il .
K ts,) }c‘;"(S) "2 Ky Cis,)

Moreover, if for some constant C, d 21 and ¢ < |a] S k

a-&Bpac, < & Yx-on

(5. 10a) ir 2
L (SB)

then for lal =k and C < MC, d < Nd,

a1 =& Bpa ) < cad¥ {(k-0)1
L (SG)

(5.10b) Ir

Vice versé, if (5.10b) holds for ¢ < |al £ k, then (5.10a) stands for

la] = k with C S MC and d < Nd

Proof. Note that

k du du
9 :‘ = cos @ kr - sin@ ke
ar dr ar
k k
k du du
8 :2 = siné@ kr + cos @ -_Eg
ér ar ar
Then
(5.11) I k-4+8 a u“ = |r k-é+8 6 u"
ar L (S ) ar L (S )
S full
k,¢
n (Sg)
which is the second inequality of (5.9) for @ = lal = k. For @, = lal = k
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we have

m
aku1 - Z [k] [dk-mcose g7 u, _ 4 Msing ¢ ue]
26X mJL ggk™ o™ deX™ 5™

m=0
k m m
a5y _ Z [k] [dk "sine & Ur | d*cose ? “e]
ae* mIL ge¥™ 3™ 6™  3o™
m=0
Therefore
-2 3 -2 3™
(5.12) et Ly s2 Z (ot =,
26% L(S) = ae™ L(S)

Since 0 < B <1 and G(Al) =0, due to Lemma A.2 of [2] we have

1P te

al < c_ :
2 0 g,1
L2(sy) Ky lisy)
B-2—
1-B=2g) s ¢l :
2 1,1
L (ss) EB (Sa)
iR e,
12(s) %5 2(s,)
Hence for 0 £ € £ 2, k 2 ¢, we have
k e
(5.13) o8t 2 Y sc, Z [‘;]nrﬁ“ AT
ae* L(S) = 2™ L%(sy)
s C_llul
2 n’;' (S, )

Actually we can make similar arguments for each term of type ral—e+8u, 0 < a,
< lal = k. Hence we have the second inequality of (5.9). The first
inequality of (5.9) can be proved in exactly the same way.

Next we shall prove (5.10b) if (5.10a) holds. (5.10a) and (5.11) ~
(5.13) lead to

k- £+B a u
L(S)

(5. 14a) Ir s & & k-
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and

K
Kk
(5. 14b) Pty < Z [f‘](m-e)za‘"‘ 2
or L (Sa) -
m=£
(. n¢ )
< czc[1+—] (1+d)" “(k-2)!
d:

which are (5.10b) for a, = 0 and @,

estimates can be derived for general terms r

= |al = k, respectively. Similar

a1-2+8ﬂau. 0<a s lal = k.

Hence (5.10b) holds with d s Md and C < NC where M=2 and N =C.C

2
2
[1 + é] . In exactly the same way we can prove that (5.10a) holds for |a| =
k with d s Md and C < NC if (5.10b) holds for ¢ = |al < k. o
Theorem 5.2. Llet f e ng’o(n), gt = cﬁl y ¢t e #*%%q), 20,1 B =
r
i i . .

(81,32,...,BM), 0<B; <1, B1 >1 - Ky (xl is defined in (4.15) with respect

to the vertex A;), 151 s M, and Ir°] = 0. Then the problem of (3.1) has

a unique solution u e Hg+2’2(9), and

[/
(5.15)  ful ,, sc[llfll I ]
2,2 ,0 +2-¢,2-¢
Hy 2 2@ ARG R ()
0 4 2-¢
Furthermore, if f € B,(Q,C.,d,.), G € B, (Q,C ,,d ,), £ =0,1 then
B £ f B Gt Gt
ue€ B:(Q,Cu,du) with Cu and du satisfyling
Cy S M, (Cf + Coo * Cg;).
(5. 16)
du < Md max(df,dco,dcl)
where Mc and Hd are some constants independent of f and Gq
Remark 5.2. If |r°| = 0, the theorem holds provided f and gl satisfy

usual condition:
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I fidx + I g}ds =0, { =1,2
Q r

J‘nxzf1 - xzfl)dx + Ir (ng1 - xlgz)ds = 0.

Then the solution uniquely exists (up to a rigid body motion) in H;+2'2(Q)

and B;(Q), respectively.

Proof. For the sake of simplicity, let Q be a straight line polygon shown
in Fig. 2.1. By Theorem 3.1, the problem (3.1) has the unique solution u =
T 1
(ul,uz) e H (Q).
Let 51,61 = {(ri,ei)lo <ry < 61, 0 < 9i < wi} ¢ Q, shown in Fig. 5.1,
where ry and ei are the polar coordinates with respect to the vertex Ai

and edge Fi. Assume that 0 < 61 < 1 such that

51.26 n SJ.ZGJ =¢ for 1= 1i,J=1,2,...,M

i

Fig. 5.1 Neighborhood of Vertex

M
Let 96 =M\ U S1 5 By the argument of difference quotient it is easy

i=1 '

to show that
1
(5.17) ful sc[ufu + Z Gl ]
2, ) @, ) %4 )
3/2 3/4 2=0,1 3/4
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¢=0,1 B (r”)

¢

If f e Bg(ﬂ). Ge € Bg-e(m, ¢ =0,1, by Morrey’s argument in 23] we can

prove that u 1is analytic in Q@ and on I' except the vertices, and there

exist some constants C0 and do satisfying

(5.18) C,<M, (C,+C _+C.)
0o = "o ‘™ PO gl
dosN ma.x(d do.c)
such that for |al =k 22, 1 £1 <M
(5.19) 10%uj) 5 < codk'z(k—z)!.
’@. ) 0
5/2

By the arguments of Theorem 2.1 and Lemma 5.1 we have

(5.20) e 2% < c.d K2k - 2)
i 2 < , = %o

Lo(s, a\ 1,8/2

where C0 and do may be different from those in (5.19), but we use the same

notations for simplicity.

L

By Theorem 2.1 and Lemma 5.1 f,f e}ﬁg’o(n) (resp. :ag(n)), g,.8 €

k+3/2-¢,3/72-¢, L 372-¢, L

}l;B (r’) (resp. B (rj), and it is sufficient to prove that in
each sector 51.61/2' 1 SsisM
(5.21) llul'}(;k+2'2(s : < Ci[llfll (s ZIIG[I k+2 ¢ 2- l( )

B 1,5,/2 ”B =0, 1

i

+ Jul

k+1
X

(S, \S
61 61

/2)

where Ci depends on k, and
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(5.22) 11%™20% < L% p (%272},
i i L (S ) i'i i
Bi 1,81/2
respectively, where |al =k + 2, k 2 0, Ll’ P1 and D1 are sufficiently
large constants, but independent of k. (a2 - 2) = oy = 2 if a, 2 2 and

a, -2 =0 |if a,

By Corollary 5.2 we have

< 2.

- - = ",
(5.23) U - u(A,)] < C[Ilfll . Z T
Uiz o Ly (S; 5) K2 b2t

8,515 /2 B 1,8, =0, 1 B4 i3,
1 1

1l

¥ (Si,ai\si,ai/z

)

We may assume that i =1, A is at the origin, I lies on the positive

1
xl-direction, and assume without losing generality that G(Al) = 0. To

1

simplify the notation we shall write S1 5 = Sa, 81 = B, etc. There are
R |
three cases to be considered:

0

(1) Fl. FM cI,
(11) T,, Ty, < T}
1' M’ »

0 1

(111) rl <, FM cI.

k-
In case (1) we assume 50 = 0, and let ;k = rké—% . It can be verified that
dr

;k satisfies

K ““(r°f) in S
(5.24)
8=0,w =0 .

Then applying (5.23) to the problem (5.24) we obtain
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(5.25) Hu “H2 < "2
3 (S 2) 3(55/2)
k-28% | 2 k o*u
chr —?(rfﬂh(s) + r "R(S J
ar [ 6/2
which implies that for |al =k +2, k>0, 0 < a, <2
a2 4 k-2 85(r%F) k o
(5.26)  |r lIL (s. ) S C[f‘ —x L (sg) * Tl s s )]
B V5,2 ark 8 3 3 75/2
< ClIf + [ull .
k,O k+1
}[,B (S ) K (Sa\sa/z)
For a2 > 2, for instance, a2 =k + 2, k>0 we have from the equation (4.1)
ak+2uP Zakf 26k+2ur 6k+1ur akur
(5.27) -4 ——s— =T + (A + 2u) [r +r - ]
28<*2 a0 arlae® arae®  ae®
ak+1u 6k+2ue
+ (A + 3u) +(A+u)r ,
ae<*1 arae**1
a¥*2y o ak*2 **ly
;] 2 ] 2 0 ;] ;)
(5.28) (A + 2u) s - F o tHT s * T "
a0 ae dr de arde e
ak+1u ak+2ur
+ (A +3u) —— <+ (A+u)r
aek*1 arae**!
{(5.27) and (5.28) lead to
k+2— k+2-
-23 a u
(5.29) ir -———-Il < C{llr ——-II + | ——
30 k+2 LB(SS/Z (36) ar Zaek LB(S )
* ""-lakﬂ;"l. (S, ) * .~ aklf"_nl. (S,)
arde B a6 B "8




k+1- -1 ak*z;

o)
26 8'Ss srae®*1 Lg(Ss)

with C = max[l, 1 + gﬁ].
u H

Suppose (5.21) holds with 50 =0 for 0 < |al] £k +2 and

0O f£a, £k + 1. Then we have

2
k+2—
=23 u %zl =

(5.30) |r2d Y st‘[ufn T

k+2"L, (S ) k,0 k+1

ae B ~3/2 }GB (Sg) K= (S5\Sy )

which is (5.26) for a, = lal = k + 2. Actually we can prove (5.27) for each
term of type ra‘-zﬂaﬁ in exactly the same way. If Ep #0, let v=u- EO,

then applying the results above to v we get (5.21) with absence of Gl.

Next we shall prove (5.22) for case (i). Assume again that G0 0, let

Fe8%a ca dg) then

B
K, 2= K= K-1=
- T -
(5.31) ¥ ZQ-iE—-l I (s % ur"‘z—éllL sy * 2122y, (s.)
ar B "3 ar B "8 ar B "3
K-2=
+ k(k - 1) " ZQ‘Eig"L (S.)
ar B "8
X k-1 k-2
K
$ 3Cgdgk!
Also due to (5.20) we have
K= k+1— K=
k3
(5.32)  Ir g lig g ) S 12 5 c k=,
ar ¥g!55 552 ar* VLA (s,Ns; ) ar* LA(S,0\S; )
1 3%
M )
ar<ae L°(S\S, ,.)

3 "3/2
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k-1

k-2 k-1
< Co[d0 (k-1)! + do k(k - 2)! + dO (k -1)!]

k-1
< 4C0d0 (k - 1)!

Substituting (5.31)~(5.32) into (5.26) we get (5.22) for lal =k + 2, k > 0,

0= o, £ 2 with L = 4C(Co + CF) and D = max (df'd60)°

Now we shall prove (5.27) for a, = k + 2, k > 0. Suppose (5.22) holds

for 0S|lal] Sk +2 and 0 £ a, <k + 1, then by (5.29) we have

,
—29%*3g K K k-2 k-1_k-2
(5.33) |r k+2uL s ) S c{ gkt + P2+ LDTIP E 0k - 1
8'Ss,2
+ LDK™2PR 20 2y + LDRTIPK Tk - 1)1 s LDkPk‘lke}
k_k F Rk ¢ c
< LD"P*ke {1 ﬁ;] e
P2 pP%k
" 3 R * P }
P2Dk (k-1)

< LDkPkk!

where P and D are selected large enough, e.g. P = 4C and df/DP < 1.

a12

Similarly, we can prove (5.22) for each term of type r Du, 2 £ a, < |lal =

k+2 For @ =0, let w=u-8& and F* = F - L(C7) eBB(Q Cpar dea)

- = — --.= —
with Cf, Cf + (52 + 11p) CEO and df max(df,dEO). Then applying the

results above to W and f we get (5.22) in general (G1 is absent), with L

= MO(C0 + CF + CEO) and D = max(d dap. do).
k—
In case (1i1): ;k = rk Q—; , k> 2 satisfles
ar
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K, 2=
C(v) = k28 (rf) in S
K 5
ar
(5.34)
T k-1 35(r8H)
(o g %) =r - —
=0, w ar- {6=0,w

Applying (5.23) to (5.34) we have

k, 2= K, =1
(5.35) 1N <& fyek2 aict), + rkt e ),
s, ) ark  Lg(Ss) ark Kl l(s.)
B °8/2 B8 ‘s
LI
¥ (S51S5,5)
which implies that for |a|l =k +2, k>0, 0% @y <2
K, 2= k, =1
-2 a— ~ [, k-23 k-18°(rG ),
(5.36) ™"l gy $C {"" 2—(11;—)"1. sy ¥ IF _(Lk_l'l 1,1
8'°5/2 ar 8'>s ar Mg’ (Sg)
K—
k3
o Lt
ar’ ¥ (Sz\S )
R (S [ S [ :
}r,.B (Sa) }nB (Sg) X (Sa\sa/z)
For 2 < a, < |kl = k + 2, arguing as in case (i), we can conclude (5.22) with
the absence of GO for 0 = a, S la}l =k + 2.
~ 0 -1 o1
If TeBy(a Cp dp). G eB(R, Cgl, dgl), then (5.32) holds, and
k-1, =1 k+1=1 k=1
(5.37) "rk 1‘_3__‘((_:'?_1" 11 < ||1--ng(1;_||L sy * (2k+1) ||Pk 1‘2%"[‘ (S.)
ar H%’ (Sa) ar B "o ar B "8
k-2+g 8% gt k-1 851G}
+k(k - 1) |Ir =t s * It T (s
ar 8'°s ar ae "B "8
k“rk‘z__gfgi_“
k-1 L. (S.)

dr- 86 B "o
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Kok e (2ee) @ - D v o P

< C—l{d !
¢ lg e g!

£6C d k!
gl g

which together with (5.31)~(5.32) and (5.35)~(5.36) yield (5.22) for la| =k

+2, k>0, 0¢5 @, <2 with L = SC(C0 + C? + Cﬁl) and D = max(d?, dal,

do). As arguing as in case (i) we can conclude (5.22) in general for case
(ii).
The proof for case (iii) is similar to cases (i) and (ii). We will not

repeat it.

Summarizing the analyses in each sector and interior we conclude that

u e);";*z’z(n) and (5.22) holds if F e}c;’o(m and & en;«sz-e,z-e(m’ =
0,1. Furthermore, if t_‘etbg(ﬂ) and E‘esg'fn), £ =0,1, then ﬁeibz(n)

with CG and dE satisfying

G G

d— =max{ds, d ., d ., 4.}
U £ EO El 0
which together with (5.26a) imply
C-<sM(Cz+C +C.)
u c f 50 51
d—- s M, (dz + d +d ).
By Theorem 2.1 and Lemma 5.2 u € B>(Q, C, d.) with some C_ and d
B u  § u u

satisfying (5.16).
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Remark 5.3. If ni =1 then B, can be chosen any positive number. If

ni > 1, the solution u may be smoother, for instance, 1 < ni <2, 15si<M
and f e ng’ltn), (resp. B;(Q)) Ge € H§+2-e’3—£(9) (resp. Bg-e(n)) with Bi €
(&i -1, 1) and k 21, then u e H§+2’3(Q) (resp. BZ(Q)). In general, for

ni € (n, nt1],1 S 1 <M. ue H§+2’2+n(ﬂ) (resp. u € B§+n(ﬂ) if £ and Ge
are given in Hg’n(ﬂ) and H§+2-£,n+2-£(n) (resp. Bg(n) and Bg+2—e(9)).

Acknowledgement. The authors wish to thank Professor Bruce Kellogg for his

helpful discussion during preparation of this paper.
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APPENDIX

The transcendental equations (4.11) ~ (4.13) are given in Lemma 4.1
without proof. We shall derive these equations here. Consider the

homogeneous problem

(A.1) U(n)u = [L(Dy,n), é(ne, nlu=0
namely P -
d u 5 du9
-u + (2u+A) (1+97)u_ + (in(u+A) + (3u+d)) — =0
2 T de
de
(A.2) . R in I = (0,w)
2
duT d"u 5 -
- ((3u+A) - in(u+r)) 3 (2u+A) + u(1+q )ue =0
de
with one of the following boundary conditions:
(A.32) ule_o,w = 0 (Dirichlet condition)
- AT B s
(A.3b) T|8=0,w = (aie,cbe) |8=0,u = 0 (Neumann condition)
~ ~ ~ -~ T
(A.3c) ule=0 = 0, Tle=w = (c}e,cbe) |6=w = 0 (Mixed condition)
where LI and Tag 2are given by (4.10)}.

Since the coefficients of the differential operator L and boundary

operator B are constants, the solution u can be written in ebeC =
ebe(cl.cz)T, b and C satisfy A(b)C =0 with

2 2
AD) = |~ b + (1 + ) (2 + A) (in(p + A) + (3p + A))b

(1a( + A) - (3u + A))b - (2u + A2 + u(1 + 72)

Then
(A.4)  det A(b) = u(2u + AI[(B2 - (1 + 72))2 + 4b2].
Let 7 = i1z, by solving for b from det(A(b)) = 0 we have

b1 =1(z + 1), b2 = i(z + 1), b3 = (1(z - 1), b4 = -i(z - 1} .
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For z=#0, =1,

(A + 3u) - z(p + A) i(-z(p + A) + (3u + A))

A(bl) = (z + 1)
-i(z(u + A) + (3u + 1)) (A + 3u) + (u+ Az

the corresponding eigen vector C1 = (1, 1)T.

(1, —1)T. 03 = (1, 1H)T, C4 = (1, -iH)T corresponding to b2' b3 and b4

Similarly we have C2 =

with

z(u+d) + (3u+A)

(A.5) = z(p+d) - (3u+d) °

Therefore, the solution of homogeneous problem has the following form:

s cos(z + 1)0 sin(z + 1)6 cos(z - 1)8
(A.8) u= Bl[—-sin(z + 1)9] * BZ[cos(z . 1)9] * BB[—Hsin(z - 1)9]

sin(z - 1)@
¥ B4[Hcos(z - 1)9]

If z =21 (i.e., 1 = %), b1 = 2i, b2 = =21, b3 = b4 =0, A(b3) = A(b4)

are null matrix. The corresponding eigen vectors are

T T 3 T

= = - = T =
c,=1(, 1), ¢ =01, -1),C =(1,0),C =(0, 1)

and the solution of homogeneous problem has the form
- cos260 sin2e 1 0
u= Bl[—Msinze] * By [Mcosze] + By [o] * By [1]

with

1 for z =1

M= _.!‘_ .
2u+A for z = -1
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and the solution of the homogeneous problem has the form

~ coso sin® (3p + A)6cosO + Asiné
(A.8) = Bl[—sine] * Bz[cose] * BB[—(Bu + A)6sin@ -ucose ]

+ B (3u + A)Bsin® - Acoso
4{(3u + A)Bcos® - usind

B = (81,82,83,84)T would be determined according to the types of

boundary conditions.

Lemma A.1. Let % = iz be an eigenvalue of the operator U(®n) for the

Dirichlet problem (A.2) and (A.3a), then 2z satisfies the equation

2
(A.9) sinzzw = [——E—] sinzw.
3-4v

Proof. For the Dirichlet boundary condition ule=0 © - 0, if z # 0, *¥1 due

to (A.3a) and (A.6), B satisfies ZB = 0 with

1 0 1 0 ]
0 1 a H
z cos(z-1)w sin(z+1)w cos(z+l)w sin(z+1)w
-sin{z-1)w cos(z+1)w -Hsin(z+1)w Hcos(z+1)w

For the existence of non-trivia2l B it is sufficient and necessary that

(A.10) det(Z) = (1 + H)2 sinzw - (1 - H)2 sinzzw = 0.
Note that 2 = 22 and
T 1-2v
A
1+4H _ z(p+A) (s,
(A.11) =0~ 3(p+n) 2 - A" T
u (3+3)

(A.10) and (A.11) yield (A.9).
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If z= %1, by (A.7) B satisfies IB =0 with

1 0 1 0

o] M 0 1

z= cos2w sin2w 1 0
-Msin2w Mcos2w 0 1

and det(Z) = 4M sinzw. Since 0 < w € 2r, for w = n,2r the homogeneous
problem has a non-trivial solution. But z = #*1 and w = m,2n satisfy
(A.9). Hence 2z = *1 are the zeroes of (A.9) for w = w,2n, which are
included in the equation (A.9).

If z=0, by (A.5), B satisfies XIB =0 with

1 0 0 -A

0] M - 1
= cosw sinw (3u+A)wcosw+Asinw (3u+A)wsinw-Acosw
-sinw cosw -(3p+A)wsinw-pucosw (3u+A)wcosw~usinw

and det(Z) = (3u+A)2u2 - (A+u)zsin2u > 0 which implies B = 0. Hence zero

is not an eigenvalue.

Lemma A.2. Let 70 = iz be an eigenvalue of the operator WU(n) for the

Neumann problem (A.2) and (A.3b), then z satisfies the equation

(A.12) sinzzw = zzslnw.

specially 7 = 0 is an eigenvalue with multiplicity of 2, the corresponding

= (cose@, -slne)T and e, = (sing, cose)T.

eigenvectors are e 5

1

Proof. For Neumann boundary condition ¢

tel = 0 we have by

0lg o

=0, w
(4.10)
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% =

>
|
*
8| B
d
+
N
i
Z
o’
1
o

(A.13) 339 i
(2u+A) 55 * (2u+A+Az)uT =0 .

>

6o

For z = 0, 1 by (A.13) and (A.6), B satisfies ZB =0 with

0 2uz 0 u(1+H) (z-1)
-2uz 0 A 0
= -2uzsin(z+1)w 2upzcos(z+1l)w -u(1+H)(z-1)sin(z-1)w u(1+H)(z-1)cos(z-1)w
-2uzcos(z+1)w -2uzsin(z+1)w Acos(z-1)w Asin(z-1l)w
where
(A.14) A = (2u+A) + Az - H(z-1)(2u+A) .

For the existence of non-trivial solutions it is necessary and sufficient

that

det(Z) = -822u{ (A-u(1+H) (z-1))2sin%w - (A+u(H+1)(z-1))3sin%zw} = O.

Hence we obtain the equation

2
2 _ [A-u(H+1)(2-1) 2
sin 2w = [A+u(H+l)(z-1)] sinow .

By (A.5) and (A.14) we have

A-pu(H+1)(2-1) _
(A.15) a1 (z=1)

which implies (A.12) immediately.

For z =1, by (A.13) and (A.7), B satisfles IB =0 with
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[ 0 2u 0 0)

-2u 0 2(u+A) 0

= -2usinZw 2UCoS2w 0 0
[-2ucos2w -2usin2w 2(u+A) 0]

then det(Z) = 0, and (0.0,0,1)-r is the corresponding solution of ZB = O.

>

Accordingly u = (O,I)T. which represents a rotation around the origin.

For z = -1 by (A.13) and (A.7), B satisfies IB =0 with

[ 0] 2u(1-M) 0 -2u )

-2u(1-M)sin2w -2u(1-M)cosww 0 -2u
s 0 o 2u 0

| o o 2 o |

then det(Z) = 0. Hence for z = *1, the equation ZB has a non-trivial
solution. The null space corresponding to the eigenvalue 7 = *i 1is not our

interest here, and we will not elaborate on it further, but refer to [26].

For z =0, by (A.5) and (A.8) B satisfies 2B = 0 with

[0 0] 1 0 )
0 o] 0 1

T = 2u(2u+A)
0 0 COosw sinw
p 0 -sinw COSW|

Obviously, det(Z) = 0, rank(Z) = 2, and (1,0,0.0)T and (0,1,0,0)T are two
linearly independent solutions of B = 0. Accordingly the space of

non—-trivial solutions of homogeneous problem is spanned by

= (cose, -sine)T, Eé

31 = (sine, cose)T




which represent the translation in X and Xy directions. a

Lemma A.3. Let 7 = iz be an eigenvalue of the operator U(n) for the mixed
problem (A.2) and (A.3c), then z satisfies the equation

2 2
2 _ 4(l-v)”  z 2
(A.18) sin"zw = 34y sin"w,

in the case that (1+%)c052w +1 =0, n=%*i are the eigenvalues, and

(A.16) is satisfied.

Proof. For the mixed boundary condition we have u] =0 and T|9=w =

=0
~ ~ T 2 . -
(cie,abe) |6=w =0. If z=+0, ¥1 by (A.6) and (A.13), B satisfies B =0
with
1 0 1 0
0 1 0 H
T =

-2uzsin(z+1)w 2uz cos(z+1)w -u(H+1)(z-1)sin(z-1)w u(H+1)(z-1)cos(z-1)w
-2zcos(z-1)w -2uz sin(z+1)w Acos(z-1)w Asin(z-1)w

where A is given by (A.14). Then

2, 2

det(Z) = 4u"Hz" - Au(1+H)(2-1) + 2u(HAz-uz(z-1)(1+H))

- 2(1+H)z(A-(2-1) (1+H)p)sin%w - 2(H-1)zp(A+p(z-1) (1+H) )sin’zw .

For the existence of non-trivial B, det(E) = 0. Hence we have

4uH22 - A(1+H)(z-1) + 2z2(HA-p(z-1) (1+H)

2
(A.17) sin"zw = 2(1-H)z(A+(z-1) (1+H)u)

(H+1) (A-(2-1)(1+H) )

2
T WD (A z-D () SM e -
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Due to (A.11) and (A.14) we obtain

(H+1)(A-p(z-1) (H+1)) _ 2°

(A.18) (H-1)(A+u(z-1)(H+1)) ~ 3-d
and
(A.19) auHz® - A(H+1)(z-1) + 2z(HA-p(2-1) (H+1)) - 4(1-v)2

2(H-1)z(A+(2z-1)(1+H)p) 3-4v

(A.17) - (A.18) yields (A.186).

For 2z =1 by (A.13) and (A.7) B satisfies XIB = 0 with
[ 1 0 1 0)
Q 1 0 1
T =
-2u sin2w 24 cos2w 0 0
[~2u cos2w -2u sin2w 2(u+A) 0]

then det(E) = 4u2[(1+2)0052w + 1]. similarly for z = -1

[ 1 0 1 0]
0 M 0 1

T =
0 0 2 0
-2u(1-M)sin2w  2u(1-M)cos2e O =2

and det(Z) = iﬁ%i [(1+ %)cosZw + 1]. Hence 2z = t1 are eigenvalues if

(1+%)cos2w + 1 =0, and also (A.16) is satisfied in the case that z = *1 and
(1+&)cosZu + 1 = 0. Therefore the equation XB = 0 has a non-trivial
solution in that case.

For z =0 then, by (A.13) and (A.8) B satisfles ¥B =0 with
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(1 0 0 -A ]
0 1 ~u 0
T =
0 0 2u(2u+A)cosw 2u(2u+A)sine
L O 0 -2u(2u+A)sinw  2u(2u+A)cosw)

then det(ZX) = 2u(2u+A) > 0. Hence 7 = 0 is not an eigenvalue of U(7n).

Remark. The transcendental equations for the Dirichlet, Neumann and mixed
boundary conditions were derived by using the argument of biharmonic function
in [26] where displacement u = (ul.uz)T in Cartesian coordinates was used.
Consequently the coefficients of the equation (A.1) are not constants.
Therefore the simple argument of linear system of ordinary equations with
constant coefficients is not valid. Nevertheless it shows that the

transcendental equations are independent of choice of coordinates.
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